Weizmann Institute's Sustainability and Energy Research Initiative

http://www.weizmann.ac.il/SAERI/ Presentations are at http://www.weizmann.ac.il/SAERI/presentations.html

Use only for Educational purposes; not for general distribution CREDITS / SOURCES many slides or parts of them came from (websites of): IEA, USDOE BES, NREL, IRENA ++++ Pls inform me* of any credit that I missed. Thanks!

PUCV 3-2018

What is Photovoltaics ?

with Pabitra Nayak (Oxford U.)

G. Hodes, L. Barnea, R. Milo (WIS), A. Kahn (PU) + all those mentioned on the slides,++++++

A Solar Cell does not require a p-n junction!

E. Yablonovich, UCB © 2015

Conventional p-n Junction Solar Cell

- Absorbs light
- Absorbed light creates carriers
- Carriers collection, by diffusion/ drift

Conventional p-n Junction Solar Cell + I-V characteristics

after textbooks & R. Collins, CSM

A schematic of a p-n junction Solar Cell

The Photovoltaic (PV) effect: Generalized picture¹

space

Inspired by RT Ross, JAP (1967);
cf. e.g., MA Green, Physica E (2002)
same principle for photosynthesis

Metastable high and low energy states

Absorber transfers charges into high and low energy state

Driving force brings charges to contacts

Selective contacts

high voltage / current / efficiency, requires to collect all carriers!

Current Types of PV Cells

Types of junction for solar cells **Homojunctions** (c-Si, GaAs,

Types of junction for solar cells: **Heterojunctions** Thin film Cd(Se,Te), Cu(In,Ga)Se₂ = CIGS, Halide Perovskite

Schottky barrier

p-i-n junction

One type of Organic Solar Cell Architecture

Solar Cell (r)evolutions

1st generation

Si

2nd generation CdTe, CIGS

Single- crystalline µm

In 11/2017 Global *Cumulative* Installed PV Power ~ 0.32 TW_p PRC goal >2012 $\geq 0.01 \text{ TW}_p/\text{yr}$ 3^d generation TiO₂ Small molecule/ halide perovskite, QDs

nano / meso crystalline ~ 20 nm

amorphous (a-Si:H; polymers)

Lowest Loss Single Junction PV lab cells								
(1-4 cm ² ; most tandems are much smaller; 2010 values in blue)								
~	[71] 29 % GaAs	~26 %						
~	[74] 26.7 % single crystal Si (79 cm ²)	~25 %						
~	[79] 21-22 % PX thin films (CIGS, CdTe, Si)	~17 %						
~	[79] 21 % halide perovskite	~4 %						
~	[88] 12 % dye-sensitized solar cell (DSSC)	~ 10 %						
~	[89] 11 % organic (molecules; polymers)	~ 5 %						
-								
~	[61%] 39 % tandem quintuple junction							
(~ [54%] 46 % bigger Mac" <i>tandem</i> triple junction ~ 36 % (~ [54%] 46 % bigger Mac" <i>tandem</i> , @ 500 x concentration) ~ 41.5%								
	Definition of efficiency:							
	$= \frac{Electrical}{Power_{OUT}} \times 100\%$							
	Solar Radiative P	ower _{IN}						

Data from Solar Cell Eff #50, Progr in PV 2017 and other sources

Possibilities for Technological Progress

2010 values in blue

Efficiency(%) Manufacture		Technology (area, if < 600 cm ²)	BEST					
			commercial					
			module/cell ¹					
24.1	SunPower	Single-crystal Si non-standard jnctn	91 <i>% 78</i>					
18.2	Panasonic	Single-crystal Si HIT jnctn	71% ← 74					
19.2	Trina Solar	Multi crystal Si standard junction	90% 71					
14.3	Evergreen	mc-Si ribbon standard junction	%					
~18.6	First Solar	CdTe	89 % 7 65					
~14.3	Solar Frontier	CIGS (Cd-free)	79 % 7 58					
12.3	Tel Solar	a-Si / nc-Si*	69 % <u>66</u>					
6.7 / 5.7	Uni-Solar	a-Si, triple junction *	54 %					
		* stabilized values						
24.8 ^{2,3}	Alta	GaAs thin film (pilot, 860)	~84%					
8.8 ^{2,3}	Sharp	dye (pilot, 398)	~75% 46					
9.1 ^{2,3}	Toshiba	Organic polymer/molecule (pilot, 25)	~82% 49					
12.5 ^{3,4}	Chose-Rome	Halide Perovskite (pilotissimo, 100)	~60%					
-1-1 cm ² cells; -2- Pilot modules; few yrs stability; -3- not yet commercially available;								
4- ; no stability data as yet								

Why do we need another Solar Cell, apart from Si ?

Well, what does PV need most?

SOFT COSTS ARE THE MAJOR DRIVER OF COST DIFFERENCES BETWEEN THE U.S. AND GERMANY

Solar PV Costs in the USA and Germany (2013)

(Hard & "Soft" Balance of Systems Costs) scale ∝ area To > [(€-\$-¥)/area] need to PV efficiency

To minimize all non-PV costs, we need more W (& Wh) / area / €-\$-¥

*Permitting, Inspection, and Interconnection costs

Sys

** Includes installer and integrator margin, legal fees, professional fees, financing transactional costs, O+M costs, production guarantees, reserves, and warranty costs.

Just Si will go only so far, because a PV cell is not very efficient...

Reminder: Solar Irradiance and power density

Figure from : http://en.wikipedia.org/wiki/Air_mass_(solar_energy)

PK NAYAK, OXFORD U

because in Solar Cells Most Energy is "Lost" as Heat Quantum (threshold) Conversion Process

O. Niitsoo

Inside a p/n junction Solar Cell

Power Losses in Solar Cells

thickness of the solar cell: approx 0,3 mm thickness of the n-semiconductor layer: approx 0,002 mm anti-reflection film

David Cahen

Losses in PV cell

Shockley-Queisser* (SQ) Limit

* detailed balance, photons-in = electrons-out + photons out; on earth, @ RT, for single absorber / junction;

Shockley-Queisser **model** assumes step function optical absorption (and EQE)

Photovoltaic Solar cell Efficiencies (≤ 2012)

David Cahen Weizmann Inst. 2018

K.Leo 2012

From 2013 till now

From 4 % to > 23 % solar cell efficiency in 7 years!

Halide Perovskite Solar Cell Architecture (~ OPV)

Evolution of EQE in halide perovskite cells

Improvements of low energy quantum efficiencies

Current efficiencies

 $J_{SC}/q \int \phi(v) dv = (J_{SC}/J_{SC}^{\max})$

Cell type (<i>absorber</i>)	RT bandgap abs. edge [eV]	J _{sc} ^{max} [mA/cm ²]	J _{sc} * [mA/cm ²]	J _{sc} /J _{sc} ^{max} [%]	2010 values in blue
sc-Si	1.12	43.3	42.6	98 <i>98</i>	
GaAs	1.42	31.7	29.7	94 <i>89</i>	
InP	1.28	36.0	31.1	86 <mark>81</mark>	

Maximum possible vs. experimental photocurrents

Nayak et al. Adv. Mater., 5-2011,3-2014; updated 01-2018

External quantum efficiency of several types of cells

In organic based solar cells EQE does not have sharp edge. This limits current efficiency.

Solar Cell Eff #35, Progr. in PV, 2010

Voltage efficiency: V_{OC}/E_{G}

qV_{oc} / E_G : voltage efficiency

Shockley-Queisser (•) and experimental (**••**) *LOSS* as function of minimal excitation energy

Nayak et al. Adv. Mater., 5-2011,3-2014; updated 11-2017 & TBP

Evolution of energy loss in metal halide perovskites

David Cahen Weizmann Inst. 2018

What can we do about this?

Better utilization of sunlight: Photon management:

Multi-bandgap, multi-junction photovoltaics

Bandgap (eV)

remember...,there's more than PV

